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The problem of the sliding of a rigid asperity over a power law visco-
elastic laver is examined in the realistic limit of infinite (dimensionless)
layer thickness. For a contact interval ot unit length, asymptotic expansions
for the normal traction over the interval topcther with several other physically
relevant quantitics (e.g. the tfriction coefficient) are developed in terms

of an appropriate asymptotic scequence ol powers of the (dimensionless)
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Introduction

In a previous paper by Walton, Nachman and Schapery [ 1], henceforth
referred to as 1, the 2-D problem of the sliding of a rigid asperity over
power law viscoelastic halfspace was considered. Here a power law visco-

elastic material is defined as one whose stress-strain relation is
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where the compliance moduli, Ciiff' are given by
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and H(t) is the Heaviside function. The rheological arguments favoring
such a model may be found in [2] and references therein.

The analogous problem for a finite laver is much more difficult. So
much so that when Alblas and Kuipers [3] aitempted it for an elastic layer
they contented themselves with a thick layer asymptotics approach. In

the spirit of their work we present a similar investigation for a power

law viscoelastic layer.
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1. Formulation of the Probiem

We now consider the problem of the steady, frictionless sliding to
the left, with velocity U, of a rigid asperity over the power law
viscoelastic layer, 0 Sy < 0. The layer is rigidly constrained at
y = 0.

Neglecting inertia, the force balance cquations are

G ()
1], ]

and the boundary conditions iare

OlZ(X'O’t) =0 -m < x < w
v(x,0,t) = [(x + Ut) a(t) < x < b(t)

= s >
022(x,U,t) 0 = ale). = b(t)
V(X,O,l’) = U(.‘(,H,t) = () —-tn € X < o
a(e) = ag e,
b(t) = b() + Ut

Here v(x,y,t) and u(x,v,t) are the vertical and horizontal displacements
and f(x) is the shape of the indentor.
We choose units so that a, = 0 and b” = 1 and thus all length
quantities may be henceforth considered dimensionless. We also adopt
the Gallilean variable s = x + Ut.
The next series ol steps is more or less standard and the details
may be found in I. The force balance cquations and boundary conditions are
Fourier transformed with respect to s, the resulting ODE's in y are solved 1
and finally a Fouricer inversion results in the following integral equation

relating the displacement t(s) to a dimensionless normal traction g(s)

(« 022(5,0))=




P r“ Py (il))_lt ips ! o E
1) 2 (s) = | dp OO I ¢ (7)o
— : 0
1 (p0) = 2|p0] - (3-4V) sinh 2[po|
‘ a0 % ol
2p 07 + (3-4V) cosh 2pY + (5-12V+8v7)
where v = ipv and vV is the Fourier transform of Poisson’s ratio wv.

For a wide variety of viscoelastic materials v is a constant [2]. The
analysis of (1) is the major thrust of this investigation. It is important

to remember that (1) is valid for all s. However, ((s) is only given

for 0 < s < 1. Thus once we find g(s) for 0 < s <1 we use (1) to define

‘- . . y -a
f(s) everywhere. Moreover, it is easy to show a priori that f(s) ™ ls!

for |s| >> 1.




2, Analysis of Thick Layer Problem
For the sake of algebraic convenience we take

Then (1) becomes, after differentiation,

1
& : —a (sinh z coshz_-
(2) w(s) = -0 J g(£)df, J z L\‘»'l‘-“-’»z-‘i?l“—Lf-Z)
0 0 X cosh™ 24 Z
. sin [% (5-5) - %—ﬂ] dz

or

S ¢ 5 l y &
(3) mf'(s) = -T(-a) [cos an J B ')‘(":]"'_‘,? = { h('g')‘dji;‘” ]

I s lg (E=s) =

cosh 2z + 2z

a~1 . SR " _gfsinhzcoshz -z
~ 8 S e = ]
0 0 ‘ -

: = r an
sin |a (s-F) - ) Jidz

) sinh z cosh z - =
Sines ~Se=sgeeereT = I
cosh™z + 2~

can show that
o inl I
- [ sinh 2 coshz =2 4 Z " o
[ z e e 1> sin |'n (s=¢) - 'é-)dz
0 o

is exponentially small for large 2z one

cosh ™z + 2z~

o o
- Z B (S_}.)n

n=0 0"nt
where
/

sin [(wtn) ‘,'l ( V.H—Y { S‘l'nl-‘i,)gl*bm 2'2-—*;"— l> dz.
L \\ cosh 2z ¥+ 2

g (_I)JH)
n

See Table 1.

v = 1/2 and set =z = pb.
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Note that for large n the integral above is v ontlh . In any event
we may write (3) as
i S (ryar 1 YA E
) mE'(s) = ~I(1-a)|cos ar J alld. { &(5-)--‘-’—;;--1
0 (s-5) 1 tesy |
- “n Jl n
A et glE)(a-E) dE.
n=D On+l. (0:00 0
To "uncouple" equation (4) we assume O - 1 and seek asymptotic
expansions for f'(s) and o(s) in terms of the gauge functions 1
P p
T, e 1, € 2,... (e=9 1) where P, = Dot Thus
. F(I—I'X) 1 }'yi)("))d@ S ﬂo(g)d',
(5)0 fO(S) e ey - LEE o S
s (E-s) 0 (s-%)
o FYAE <o £ )
; i l.(l_”)[ 1 5y (F)d s By (B)E
(5)1 fl(s) t+a, J g“(*,)dt, L T, "~ Cos am SR
0 : t SH(E=s) 0 (s-£)
‘
etc.
In each case the right hand side is always the same generalized
Abel integral operator and the left hand side is known for 0 < s < L ﬂ
Equation (5) has been extensively analysed in I for a variety of
asperity shapes and so for the purposes of illustration we consider the
problem for a cylindrical indentor of radius R:
*J
¥ (.--‘.—-.~)"z
f(s) = ~ S5 —+d, O i




Having chosen an asperity shape the issue of principal interest
now is the behavior of gn(s) as a function of . The solution exhibits
markedly different behavior for « < 1/2, « = 1/2 and « > 1/2. 1In

particular, continuity of the normal traction is absent for o > 1/2

4
and, indeed, for « > 1/2 the traction posscsses an integrable singularity
at the leading edge, s = 0. Of course for o = O all the classical results
from elasticity are recovered, in particular the results of Alblas and ;

Kuipers [3].

The solutions were derived in I and we catalog them below.

o< 12 s
Pu—l 1 %-11 1/
® ke e
'(1-ct) s
-1 1 i
RY P (1/2) G- ) 1 _-1/2 g
2 E ey
- —_“_-A_-._-‘_‘—.”_nlm § e b1 e dFJ
FA-)T(2-)T(a+3) ‘s (£-s)
where the auxilliary condition
i
1 -~
) [ et gy Far =0
0
0
must be enforced. Clearly equation (7) defines € where €y is the
first approximation to ¢, the apex of the indentor. This ¢y = 1/2(1-a)

which, for 0 < a < 1/2, gives a value between 0 and 1. The function

go(s) is continuous on |0,1]. See Figurc 1.
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a=1/2
k. This is the easiest case mathematically and gives
3
g - L -
{ (8) ‘\”U(S) = 21 (1-8)/1R]}
with co = 1. Thus the material leaves at the apex of the indentor. Note
that (8) predicts discontinuous behavior of ;"”(()). See Figure 1.
o > 1/2
The expression tor };()(s) piven by (6) is cqually valid for this
range of @ as is the prescription e, = 1/2¢1-a) .
Note, hcwever, that now ey > 1 so that the material leaves before
‘{ the apex. Morcover, ;'_()(:;) is now singular at the leading edge. Indeed,
| o
' ()(I—s:)l/" s » 1-
| 9 gy(s) = L%
: 0(s) s > O+
E
[ .
:
for all o and is thus singular for « > 1/2. See Figure 1.
3 Two physically meaningful quantitics associated with this problem are
' 1 1 1
the total load (P = G..ds) and the friction coefficient (€_=| £'0,.ds/| 0,,d8).
i 22 f 22 22
0 0 0
The preceding work allows us to exhibit the first approximations to
: both of these quantitiecs,
| Y
i‘ r3/DTE - R
: (10) PO e
SR (1=a) "'(3=c1)
;
P
| 0
E (11) Cf = q(2-c) /R(1=ct) (3=x)
-
[ \ The one remaining unknown quantity is d, the depth of penetration
3
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at x = 0. To facilitate the computation of d we rewrite (1) as follows,

(“ - l" Ll I’l S
H[(S) = f 1 7 {z) cos | Ydz J g(F)d?r
l0 0
r" (i
(- i (
+ Lo s ‘cos o r(7)d cos an | g(&)(s=£) *a
| j
0 V]
1 ] o
( 1 ) ( [ o
- ( g(5) (£-s) dE| + ( g(£)ds | dy z
J:; IO Jo Jo
[1 = 0(z)] sin L 4+ %Ny 4o

’ ¢ . . :
Clearly d“ will be an 0(f") quantity, a result which could also
have been predicted from L as it was shown there that the displacement was
a e . - , 3
0(s’) for large s. This is analogous to the results of Alblas and Kuipers
[3] who had an 0O(In 6) penctration depth reflecting the well known fact

that for an elastic halfspace the displacement is 0(ln s) for large s.

In any event, we have

(12) g, =0 1 el hoyda + 0@

and values of the above integral for various values of a will be provided
below.
Successive terms in the asymptotic cxpansion are deduced exactly

as the lowest order quantities were. For example,

>

o8 (- | .vil(‘ ).u (H r.l(',)d'.
00 7 {

=— - SCoS o e
s i T

(13) cl/i{ + a
) s (£~9) 0 (s-t)

gerves to define both g, (s) and ¢, (n Lthis case no bounded solution

exists unless




N = - > B ane a 5 Ee = {
<y lUth ind then \l( ) i

It thus follows that Pl = (0, and rl i

’ £ “g'g

Proceeding to the next order gives

1 - [l g, (£)dF s g, (&)dE
(14) c2/R+al J 20(5)(5—&)d{ = lﬁ}%gl’j f'“"iij - cOos *ﬂ[ e e
0 Us (5-8)" " 0 (s-%)
The solvability condition for this problem defines ¢ as

e

Rnl 1 } Ra | 0

S Eo (E)YdE — P =——-— |RC. + (c. -
(5) <5 = gy ||, S0t = B | “wgmay M * (o - VP
The traction g, (s) may be found from equations (6), (8) by the simple
expedient of replacing R by 1 and g (s) by —uﬂ(s)/n]PO. Clearly
for any value of «, gv(s) enjoys all the properties that go(s) had .

We can also see from this last result that

P2 = '1/a1

From the represcentative table supplicd below it is clear, for example,
that €1 <N OGN0 o 0 and P2 > (). Thus the apex is shifted to
the left by the finiteness of the layer, which is what one would c¢xpect.

Moreover, since the material ultimately returns to its original position

the friction cocfficient is lowered.




Summary

Using the closed form solutions for the sliding of a rigid asperity
over a power law viscoelastic halfspace we are able to supply, in terms of
an asymptotic representation, corresponding quantitic: for the case of

a large finite layer.




(o i 2 3 4
1/4 0.76 =172 =1 .207 { 6.799 8.027
1/2 k.81 =1.234 -1.8997 L4, 827 11,228
3/4 4.10 - .654 -2.141 | 1.796 11223
Table 1. u”(u) flor o = 144, 1/2 and 3/&.

1/2

3/4

Table 2.

L Rt
—a-1
(z)dz
Q
2. 35
L. 5]

See Equation (12).
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Figure 1. Normal traction fields over the contact interval for a
parabolic asperity for o < 1/2(—-——); u = 1/2(=+=+=*);

o > 1/2(----).
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